Групповая оценка объектов

4.

где получается из некоторой перестановкой объ­ектов, а из той же самой перестановкой. Эта ак­сиома утверждает независимость расстояния от перену­мерации объектов.

5. Если две ранжировки , одинаковы всюду, за исключением n-элементного множества элементов, явля­ющегося одновременно сегментом обеих ранжировок, то можно вычислить, как если бы рассматрива­лась ранжировка только этих n-объектов. Сегментом ранжировки называется множество, дополнение которо­го непусто и все элементы этого дополнения находятся либо впереди, либо позади каждою элемента сегмента. Смысл этой аксиомы состоит в том, что если две ранжи­ровки полностью согласуются в начале и конце сегмента, а отличие состоит в упорядочении средних n-объектов, то естественно принять, что расстояние между ранжиров­ками должно равняться расстоянию, соответствующему ранжировкам средних n-объектов.

6. Минимальное расстояние равно единице.

Пространство ранжиро­вок при двух объектах можно изобразить в виде трех точек, лежащих на одной прямой. Расстояния между точками равны При трех объектах про­странство всех возможных ранжировок состоит из 13 то­чек.

Используя введенную метрику, определим обобщен­ную ранжировку как такую точку, которая наилучшим образом согласуется с точками, представляющими собой ранжировки экспертов. Понятие наилучшего согласова­ния на практике чаще всего определяют как медиану и среднюю ранжировку.

Медиана есть такая точка в пространстве ранжиро­вок, сумма расстояний от которой до всех точек - ран­жировок экспертов является минимальной. В соответст­вии с определением медиана вычисляется из условия

Средняя ранжировка есть такая точка, сумма квад­ратов расстояний от которой до всех точек – ранжиро­вок экспертов является минимальной. Средняя ранжи­ровка определяется из условия

Пространство ранжировок конечно и дискретно, по­этому медиана и средняя ранжировка могут быть только какими-либо точками этого пространства. В общем слу­чае медиана и средняя ранжировка могут не совпадать ни с одной из ранжировок экспертов.

Если учитывается компетентность экспертов, то ме­диана и средняя ранжировка определяются из условий [12]:

где - коэффициенты компетентности экспертов.

Перейти на страницу: 1 2 3 4 5 6

Copyright © - 2024 - www.covermanagement.ru