Оценка согласованности мнений экспертов
При ранжировании объектов эксперты обычно расходятся во мнениях по решаемой проблеме. В связи с этим возникает необходимость количественной оценки степени согласия экспертов. Получение количественной меры согласованности мнений экспертов позволяет более обоснованно интерпретировать причины в расхождении мнений.
В настоящее время известны две меры согласованности мнений группы экспертов: дисперсионный и энтропийный коэффициенты конкордации.
Дисперсионный коэффициент конкордации. Рассмотрим матрицу результатов ранжировки n объектов группой из m экспертов (j=1,…,m; i=1,…,n), где - ранг, присваиваемый j-м экспертом i-му объекту. Составим суммы рангов по каждому столбцу. В результате получим вектор с компонентами [12]
(i=1,2,…,n). (5.14)
Величины рассмотрим как реализации случайной величины и найдем оценку дисперсии. Как известно, оптимальная по критерию минимума среднего квадрата ошибки оценка дисперсии определяется формулой [12]:
, (5.15)
где - оценка математического ожидания, равная
(5.16)
Дисперсионный коэффициент конкордации определяется как отношение оценки дисперсии (5.15) к максимальному значению этой оценки [12]
. (5.17)
Коэффициент конкордации изменяется от нуля до единицы, поскольку .
Вычислим максимальное значение оценки дисперсии для случая отсутствия связанных рангов (все объекты различны). Предварительно покажем, что оценка математического ожидания зависит только от числа объектов и количества экспертов. Подставляя в (5.16) значение из (5.14), получаем [12]
(5.18)
Рассмотрим вначале суммированные по i при фиксированном j. Это есть сумма рангов для j-го эксперта. Поскольку эксперт использует для ранжировки натуральные числа от 1 до n, то, как известно, сумма натуральных чисел от 1 до n равна [12]
(5.19)
Подставляя (5.19) в (5.18), получаем [12]
(5.20)
Таким образом, среднее значение зависит только от числа экспертов m и числа объектов n.
Для вычисления максимального значения оценки дисперсии подставим в (5.15) значение из (5.14) и возведем в квадрат двучлен в круглой скобке. В результате получаем [12]
(5.21)
Учитывая, что из (5.18) следует
получаем [12]
(5.22)
Максимальное значение дисперсии достигается при наибольшем значении первого члена в квадратных скобках. Величина этого члена существенно зависит от расположения рангов - натуральных чисел в каждой строке i. Пусть, например, все m экспертов дали одинаковую ранжировку для всех n объектов. Тогда в каждой строке матрицы будут расположены одинаковые числа. Следовательно, суммирование рангов в каждой i-u строке дает m-кратное повторение i-ro числа [12]:
Возводя в квадрат и суммируя по i, получаем значение первого члена в (5.22) [12]:
(5.23)
Теперь предположим, что эксперты дают несовпадающие ранжировки, например, для случая n=m все эксперты присваивают разные ранги одному объекту. Тогда [12]
Сравнивая это выражение с при m=n, убеждаемся, что первый член в квадратных скобках формулы (9) равен второму члену и, следовательно, оценка дисперсии равна нулю.
Таким образом, случай полного совпадения ранжировок экспертов соответствует максимальному значению оценки дисперсии. Подставляя (5.23) в (5.22) и выполняя преобразования, получаем [12]
(5.24)
Введем обозначение [12]
(5.25)
Используя (5.25), запишем оценку дисперсии (5.15) в виде [12]
(5.26)