Обработка парных сравнений объектов
При решении задачи оценки большого числа объектов (ранжирование, определение относительных весов, балльная оценка) возникают трудности психологического характера, обусловленные восприятием экспертами множества свойств объектов. Эксперты сравнительно легко решают задачу парного сравнения объектов. Возникает вопрос, каким образом получить оценку всей совокупности объектов на основе результатов парного сравнения, не накладывая условия транзитивности? Рассмотрим алгоритм решения этой задачи. Пусть m экспертов производят оценку всех пар объектов, давая числовую оценку [12]
(5.36)
Если при оценке пары экспертов высказались в пользу предпочтения экспертов высказались наоборот и экспертов считают эти объекты равноценными, то оценка математического ожидания случайной величины равна [12]
(5.37)
Общее количество экспертов равно сумме
(5.38)
Определяя отсюда и подставляя его в (5.37), получаем [12]
(5.39)
Очевидно, что Совокупность величин образует матрицу на основе которой можно построить ранжировку всех объектов и определить коэффициенты относительной важности объектов.
Введем вектор коэффициентов относительной важности объектов порядка t следующей формулой [12]:
(5.40)
где - матрица математических ожиданий оценок пар объектов, - вектор коэффициентов относительной важности объектов порядка t. Величина равна [12]
(5.41)
Коэффициенты относительной важности первого порядка есть относительные суммы элементов строк матрицы X. Действительно, полагая t=1, из (5.40) получаем [12]
(5.42)
Коэффициенты относительной важности второго порядка (t=2} есть относительные суммы элементов строк матрицы X2 [12].
Перейти на страницу:
1 2 3