Определение взаимосвязи ранжировок
При обработке результатов ранжирования могут возникнуть задачи определения зависимости между ранжировками двух экспертов, связи между достижением двух различных целей при решении одной и той же совокупности проблем или взаимосвязи между двумя признаками.
В этих случаях мерой взаимосвязи может служить коэффициент ранговой корреляции. Характеристикой взаимосвязи множества ранжировок или целей будет являться матрица коэффициентов ранговой корреляции. Известны коэффициенты ранговой корреляции Спирмена и Кендалла.
Коэффициент ранговой корреляции Спирмена определяется формулой [12]:
(5.50)
где - взаимный корреляционный момент первой и второй ранжировок, - дисперсии этих ранжировок. По данным двум ранжировкам оценки взаимного корреляционного момента и дисперсии вычисляются по формулам [12]:
(5.51)
(5.52)
где n – число ранжируемых объектов, - ранги в первой и второй ранжировках соответственно, - средние ранги в первой и второй ранжировках. Оценки средних рангов определяются формулами [12]:
(5.53)
Вычислим оценки средних рангов и дисперсий в предположении, что в ранжировках отсутствуют связанные ранги, т. е. обе ранжировки дают строгое упорядочение объектов. В этом случае средние ранги (5.53) представляют собой суммы натуральных чисел от единицы до n, поделенные на n. Следовательно, средние ранги для обеих ранжировок одинаковы и равны [12]
(5.54)
При вычислении оценок дисперсий заметим, что если раскрыть круглые скобки в формулах (5.52), то под знаком сумм будут находиться натуральные числа и их квадраты. Две ранжировки могут отличаться друг от друга только перестановкой рангов, но сумма натуральных чисел и их квадратов не зависит от порядка (перестановки) слагаемых. Следовательно, дисперсии (5.52) для двух любых ранжировок (при отсутствии связанных рангов) будут одинаковы и равны [12]
(i=1,2). (5.55)
Подставляя значение из (5.51) и из (5.55) в формулу (5.50), получим оценку коэффициента ранговой корреляции Спирмена [12]
(5.56)
Для проведения практических расчетов удобнее пользоваться другой формулой для коэффициента корреляции Спирмена. Ее можно получить из (5.56), если воспользоваться тождеством [12]
Перейти на страницу:
1 2 3