Групповая оценка объектов

Следует заметить, что практическое вычисление век­торов групповой оценки объектов и коэффициентов ком­петентности проще выполнять по рекуррентным форму­лам (5.4), (5.5), (5.6). Определение предельных значе­ний этих векторов по уравнению (5.13) требует примене­ния вычислительной техники.

Рассмотрим теперь случай, когда эксперты произво­дят оценку множества объектов методом ранжирования так, что величины есть ранги. Обработка результа­тов ранжирования заключается в построении обобщен­ной ранжировки. Для построения такой ранжировки введем конечномерное дискретное пространство ранжи­ровок и метрику в этом пространстве. Каждая ранжи­ровка множества объектов j-м экспертом есть точка в пространстве ранжировок.

Ранжировку можно представить в виде матрицы парных сравнений, элементы которой определим следу­ющим образом [12]:

Очевидно, что , поскольку каждый объект эквива­лентен самому себе. Элементы матрицы антисим­метричны .

Если все ранжируемые объекты эквивалентны, то все элементы матрицы парных сравнений равны нулю. Та­кую матрицу будем обозначать и считать, что точка в пространстве ранжировок, соответствующая матрице , является началом отсчета.

Обращение порядка ранжируемых объектов приводит к транспонированию матрицы парных сравнений.

Метрика как расстояние между i-й и j-й ранжировками определяется единственным образом фор­мулой [12]

если выполнены следующие 6 аксиом [12]:

1. причем равенство достигается, если ранжировки и тождественны;

2.

3.

причем равенство достигается, если ранжировка «лежит между» ранжировками и . Понятие «лежит между» означает, что суждение о некоторой паре объектов в ранжировке совпадает с суждением об этой паре либо в , либо в или же в в а в

Перейти на страницу: 1 2 3 4 5 6

Copyright © - 2025 - www.covermanagement.ru